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Abstract An analysis is performed to study the skin-friction, the couple-stress and heat transfer
characteristics of a laminar free-convection boundary layer flow of a micvopolar fluid past an
isothermal plate inclined at a small angle to the horizontal. When the inclination is positive, series
solutions, one valid near the leading edge and the other at a large distance from it, are obtained.
Introducing a strained coordinate transformation, the local nonsimilar boundary layer equations
are also derived for the flow from the leading edge to downstream, solutions of which are
obtained by using an implicit finite difference method. When the inclination is negative, the
boundary layer separates. The effects of the material parameters on the skin-friction, the local
couple-stress, the local Nussell number and the point of separation for a negatively inclined plate
have been investigated.

Nomenclature

f = dimensionless stream function x,y = distance along and normal to the

g = dimensionless microrotation surface, respectively

g = acceleration due to gravity P = stream function

Gry = Grashof number v = viscosity coefficient

h = heat transfer coefficient p = density of the fluid

j = microinertia per unit mass K = rotational viscosity coefficient

k = thermal conductivity of the fluid Iéj = volumetric expansion coefficient

M, = dimensionless couple-stress at the ~ = gyroviscosity coefficient
surface n = dimensionless coordinates

N = angular velocity 0 = dimensionless temperature

Nu = Nusselt number A = vortex viscosity parameter

Pr = Prandtl number

gw = surface heat flux Subscripts

T = temperature w = surface conditions

u,v = velocity components along (¥,5) oo = reference conditions

directions

1. Introduction
Eringen (1966a) deals with a class of fluids which exhibit certain microscopic
effects arising from the local structure and micromotions of the fluid elements.
These fluids contain dilute suspensions of rigid micromolecules with individual



motions, which support stress and body moments and are influenced by spin-
inertia. The theory of micropolar fluids and its extension to thermomicropolar
fluids (Eringen, 1966b) may form suitable non-Newtonian fluid models which
can be used to analyze the behavior of exotic lubricants (Khonsari, 1990;
Khonsari and Brewe, 1989), colloidal suspensions or polymeric fluids
(Hadimoto and Tokioka, 1969), liquid crystals (Lockwood et al., 1987; Lee and
Eringen, 1971), and animal blood (Ariman et al., 1973). Kolpashchikov et al.
(1983) have devised a method to measure micropolar parameters
experimentally. A thorough review of this subject and application of
micropolar fluid mechanics has been provided by Ariman et al (1974) and
Ahmadi (1976). Studies of heat convection in micropolar fluids have been
focused on flat plates (Jena and Mathur, 1981; 1982; Gorla, 1983; Yucel, 1989;
Hossain et al,, 1995; Chiu and Chou, 1993) and on a wavy surface (Mori, 1961).
Recently, Hossain and Chowdhury (1997) examined the mixed convection flow
of a micropolar fluid over a horizontal surface with variable spin gradient
viscosity employing an implicit finite difference method.

In the present paper, a steady two-dimensional natural convection flow of a
viscous incompressible thermomicropolar fluid with uniform spin-gradient
over a flat plate with a small inclination to the horizontal has been investigated.
In earlier studies of Newtonian fluids, Jones (1973) studied the problem by
series solution method valid near the leading edge and other at large distances
from it when the inclination is positive. A step-by-step numerical technique has
also been employed to complete the solution in the region where neither of the
series is adequate. In the present paper, solutions are obtained by using the
series solutions for the regions near the leading edge as well as far downstream.
Unified transformations are also evolved to reduce the boundary layer
equations valid in the entire regime from the leading to the downstream regime.
The resulting equations are integrated employing an implicit finite difference
method together with the Keller-box scheme for the positively inclined surface.
The same finite difference method has been used to solve the equations
governing the flow near the leading edge to measure the point of separation in
the case of a negative inclination of the plate. Finally, numerical results for the
local skin-friction, the local couple-stress and local Nusselt number are
presented for different values of the material parameters of the fluid.

2. Mathematical formulation
A two-dimensional, steady free-convection flow of a viscous incompressible
thermomicropolar fluid from an isothermal flat surface inclined at small angle,
0, to the horizontal is considered. The inclined angle is either positive (p > 0) or
negative (p < 0). The temperature of the ambient fluid is assumed to be
uniform at 7%, and that of the surface at 7},. The flow configuration and the
coordinate system are shown in Figure 1.

Under the usual Boussinesq approximation, the flow is governed by the
following two-dimensional equations:
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Figure 1.

The flow configuration
and the coordinate
system

Thermal boundary layer
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where, u, v are respectively the x and y-components of the velocity field, v is the
kinematic coefficient of viscosity, 7" is the temperature of the fluid in the boundary
layer, p is pressure, p is the density of the fluid, g is the acceleration due to gravity,
(3 is the coefficient of volumetric expansion, « is the thermal diffusivity, ¢ is the
inclination of the plate to the horizontal, NV is the microrotation component normal
to the (x, y)-plane, j is the micro-inertia density, x is the vortex viscosity, and ~ is
the spin-gradient viscosity which is assumed tobe y = (1 + /2);.
The boundary conditions for the present problem are

ou
=0: u=v=0,T=1T,, N=—-s—
y w ay (6)

y—oo: u—0, N=0,T—> T,



The boundary layer approximation of equations (2) to (5) may be made by
introducing the following scaled variables:

L L

%zf, jzXGVi/S, ﬁ:—GrLZ/Su, E:—GVLI/SU
L L v v %

N Y R R S T-Ty

ﬁ—ﬁGi’L ,N—;GVL N,a—m

where
Tw— T

GVL:gﬁ( w - )COS@LS (8)

1%

is the Grashof number and L is th% horizontal length scale. Systematically
ignoring the terms which are O(Gr; / 5) relative to those retained in the limit
Gr;, — oo and dropping the bars with brevity, we get

ou Ov

ou  Ou op 0Pu ON
— 4 v—=—"4+1+A)—+A—+A 1
M8x+vay 8x+( + )ay2+ 8y+ 0 (10)
op
a—y_e (11)
ON ON PN
00 00 1 0%
y=0: u=0v=0, 6=1, N:—s%
oy (14)
y—oo: u—0, N=0,0—-0
where
Pr:Z,A:Gré/‘gtango and A=" (15)
a I

are, respectively the Prandtl number, the flat plate inclination parameter and the
vortex viscosity parameter. It may further be noted that Stewartson’s horizontal
problem corresponds to A — 0 while the classical free-convection problem relates
to A — oo, iIn which case the present scaling is inappropriate (Stewartson, 1961).
In the boundary conditions (14), the value s = 0 corresponds to the case
where particle density is sufficiently large so that microelements close to the
wall are unable to rotate. The value s = 1/2 is indicative of weak concentrations
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and, when s = 1, we have flows which are representative of turbulent boundary
layer as indicated by Rees and Bassom (1996). Thus, for s = 0, particles are not
free to rotate near the surface, but as its value increases to 0.5 and 1.0, the
microrotation term is augmented and induces flow enhancement. We shall
consider here values of s between these two extremes.

3. Solution methodology
In the present section, we propose the solutions for the present problem:

(1) appropriate to the leading edge regime where the flow is close to the flow
from purely horizontal surface for both positively and negatively
inclined plate;

(2) wvalid to the downstream regime at large x where the flow approaches the
classical buoyancy-driven free-convection flow; and

(3) the solutions valid in the entire regime from the leading edge to
downstream.

In the first two cases, perturbations techniques are employed and in the last
case an implicit finite difference method is developed.

The quantities of the physical interests are the shear stress, 7, the couple-stress,
m,,, and the rate of heat transfer, g,,, at the surface. These quantities are defined by

ON oT
y My = ’Y[a—y] . and gy = —k [6_}7} (16)

y= }7:0

Ou

% + IiN:|

[ y

Introducing the transformations from (7), the shear stress, the couple-stress and
the heat transfer rate can be obtained from the following expressions:

_ 0 _ ON
G = (98 ] = am[]
o v
NuGr; V5 = | % "
u VL = — 8_y .
y:

where Cr, Nu and M,, are respectively the skin-friction, the Nusselt number and
the dimensionless couple-stress and are defined by

Cf Tw Nu — m; My

~ /L2 B(Ty — Too)/L’ M= /L3 (18)

Solutions in the leading edge regime

Near the leading edge of the plate, we expect the structure of the boundary
layer to be similar to that associated with the flow along a semi-infinite
horizontal plate. Consequently we employ the following similarity variable, but
allow the coefficients to depend also on x in order to take account of the
departure from similarity. Thus, we write



1/} = x3/5f(777 .X'), N = xil/Sg(na x)a p= x2/5¢(777 x)a

19
0=0(nx), n=x"y )
where v is the stream function defined by
N Hp
= — = —— 2
u 3’ v P (20)

Introducing the transformation given in equation (6) into the set of equations
(9)-(13) one gets

(L4 AV 4 27"~ 2/ 2 (6 1) + A + A%

N ox ox  Ox

3 1 og of

"o e Ly 1Y Y
(L+A/2)8" + /g +:fg x( ] 8x> (22)
¢ =0 (23)

LI DO
prl +5/0 = ( o m) (24
The corresponding boundary conditions given in (14) take the form

£(0,x) =f'(0,x) =0, 6(0,x) =1, g(0,x) = —sf"(0,x) (25)

f'(00,x) =0, ¢(c0,x) = 6(c0,x) = g(c0,x) =0

where primes denote differentiation of the functions with respect ton .
We may now develop series solutions of the problem defined by (21)-(24) in
the form

)=S0, gnx) =S )
=0

=0
2) =3 2 Pom),  0n.x) = Py
=0 =0

The equations and boundary conditions for the coefficients f;, g;, ¢; and 6; are
found by substitutions of the expressions given in (26) into (21)-(24) and
equating the coefficients of equal powers of +°/°. Hence, we have the equations
of leading order:

(26)
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2
gIgF 1+ A + qu ~ = (60— ) + gy =0 (7
/! 3 / 1 /
(1+A/2)gy + gfogo + gfogo =0 (28)
820 ¢6 — 90 (29)
1 // 3 /
§;@y+5ﬁ00:() (30)

The boundary conditions appropriate to this set of equations are

fo(0) =/5(0) =0, 60(0) =1, 20(0) = —s/¢'(0)

31)
fi(00) = 0, 6(o0) = (o) = golc) = 0 (
The recurrence formulae for the higher order equations are given by:
2 2
(1+ A>fm - _(bn + —77% + Ag;ll + Aenfl
(32)

+Z{f/af,i’ L =3k f o~ =B k+<z>nk)}=o

1

(1+4/2)g +Z{ it i (Va5 (3n—3k1)flg k}zo (33)

¢:¢ - 9% (34)

ﬁegg SZ{fken p— (=R (F0up + fu10}) } =0 (35)

and the boundary conditions are

12(0) = £,,(0) = 6,,(0)
f() O¢n( ):

forn=1,2....

Here, for A = 0, the problem corresponds exactly to that studied by Jones
(1973) for Newtonian fluid. But for A > 0, the functions fy, gy, ¢ and 6y
correspond to the similarity solutions of the problem of free-convection flow of
thermomicropolar fluid past an isothermal horizontal plate. A thorough
literature search has revealed that the solution for this problem has not yet
been discussed in the literature. Hence, the exact solutions to this in terms of
7/ (0),£,(0) and ¢;,(0) are obtained by using the Nachtsheim-Swigert iteration
technique and are entered in Table L.

0. £.(0) = ~5£/(0) )
(

0,(00) = gn(c0) =0



Next we find the functions f;, g;, ¢; and 0; for 7 > 1 by solving sets of equations
in sequence, again using the Nachtsheim-Swigert iteration technique. These
functions, unlike £y, 2o, oo and 6y, may be seen to depend on A and thus on the
inclination ¢ of the plate to the horizontal. In Table I, numerical values of the
values of //(0),g/(0) and ¢(0) for ¢ = 0, 1 and 2 are entered for different values of
A withPr=0.72, A = 1.0 and s = 0.5. In this Table the numerical values contained
in the superscript * marked row for A = 0 are due to Jones (1973). It can be seen
that the present solutions are in excellent agreement with those of Jones (1973) up
to the third digit. The authors checked very carefully their numerical results and
found no differences with the results entered in that table.

Once we know the values of (0, x),g’(0,x) and ¢'(0, x)from the solutions
of the equations (21) to (24) satisfying the boundary conditions (25), we can
obtain the values of the skin-friction, the couple-stress and the Nusselt number
from the following expressions:

CGr*P° = {14 (1 —s)AY27"(0, %),
M,Gr " = (14+A/2)x7%g (0, x) (37)
NuGr;l/5 = —x725¢'(0,x)

For Pr =0.72, A =5.0,s = 0.5 and A = &1 near the leading edge, the values of

the coefficients of the skin-friction, the couple-stress and the Nusselt number in
terms of three-term series are:

GG P ={1 +(1—s)A}x—1/5{o.44178 +0.1945x*/° —0.021969x5/° + - - } (38)
M,Gr; P =1+A /2)x‘3/5{0.0363710.03327963/5 —0.00278x%/5 + . - } (39)

NuGr;'® = —x’2/5{0.30053 +0.04204%°/° — 0.0096x%/° +- - - } (40)

If A = -1, the boundary layer eventually separates from the plate. However, for
A = +1, the solutions of the boundary layer equations (21)-(24) ultimately

A 00 AO) —£0) &0 £(0) —g0) -6(0) —6(0) 650)
0.0 09790 05186 00534 01569 01712 00104 03576 00555 0.0140
09784 0.5184* 0.0102° 0.3574* 0.0555" 0.0053"
10 07118 03542 00381 00885 00914 00064 03363 00508 0.0127
2.0 0.5800 0.2747 00301 00608 00597 00046 03213 00471 00116
30 04985 02268 00251 00457 00432 00034 03098 00443 00108
40 04417 01945 00216 00363 00332 00027 03005 00420 00101
5.0 03993 01711 00191 00299 00267 00022 02926 00401 0.0096

Note: @ These values are due to Jones (1973)
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approach the classical buoyancy-driven free-convection solution as x — 0.
Below we consider the structure of the asymptotic solution for large x of the
present problem.

Downstream solution for ¢ > 0

Since, in the downstream regime, the development of the boundary layer is
influenced by the component of buoyancy force parallel to the plate, the
appropriate transformation for the asymptotic form of the solution when the
plate is at a positive angle of inclination is suggested by analogy with the
classical case from a heated vertical plate. Thus we introduce

w = x3/4f(777 x)a N = x1/4g(777 x)a b= x1/4¢(77a x)v

(41)
0=0(nx), n=xYy

Introducing the above transformations into the set of equations (9)-(13) one gets

3 1 1
(L Q)"+ 2" =517 = 376 = ne') + A

4
42)
06 of . of (
o 1/4_: 1<
TAD ox x< ox 4 8x)
" 3 /_1 , la_g_ /g
(1+A/2)¢" + /2 4fg—x< o & ax> (43)
¢ =0 (44)
1 / 3 / /@_ /a_f
EH +Zf6 x(f o 98x> (45)
The corresponding boundary conditions given in (14) take the form
£(0,x) =f(0,x) =0, 6(0,x) =1, g(0,x) = —sf"(0,x) (46)

f/(oovx) =0, ¢(Ooax) = 9(oo,x) :g(OO,X) =0

where primes denote differentiation of the functions with respect to 7.

As in the previous case, we expand the function in powers of x
substitute in the set of equations (42)-(45) and collect the terms of equal powers
of x=3/* to get:

—3/4
b

1
(L A+ Sy S+ Ay + Ay = 0 (47)

3., 1
(L+A/2)gy + 1 /gy — 3 /80 = 0 (48)



1
Pr

3

The corresponding boundary conditions take the form
fo(00) = ¢o(00) = by(o0) = go(00) =0

Moreover, we have:

3 1 3 1
(1+A)" +1f0f1” - Zféfl/ +1¢1 1 (¢0 + 77¢6) + Agy+ A0 =0 (52)

3 1 1
(1+A/2)g] +3figh + 5o — 7figo =0

1
Pr

¢ = b

3 3 6
9’1/ +1f00’1 —1f691 +1f196 =0

£1(0) =£(0) = 61(0) =0, &1(0) = —s/{'(0)

fl(c0) = ¢1(00) = 01(c0) = g1(c0) =0

(53)
(54)

(55)

(56)

It can be seen that the set of equations (47)-(50) involving the functions fy, go, ¢
and 6, clearly represent the equations governing the free-convection flow of a
thermomicropolar fluid past a flat plate purely developed by the buoyancy-
driven free-convection flow as x — oo. We further notice that the solutions
involve the dependency of all the physical parameters. For A = +1 numerical
values of £'(0), g,(0) and 6;,(0) for different values of the pertinent parameters
obtained, as before, by the Nachtsheim-Swigert iteration technique are

presented in Table II.

As before, knowing the values of f”(0,x),g’(0,x) and ¢'(0,x) from the
solutions of the equations (42)-(45) satisfying the boundary conditions (51), we

A 0(0) —65(0) 2(0) 1(0) 61(0) £1(0)
0.0 0.95601 0.35683 0.23777 0.65322 -0.00001 0.10401
0.956007 0.35682° 0.65161*

1.0 0.67666 0.33550 0.13065 0.47158 0.00001 0.05759
2.0 0.53678 0.31933 0.08631 0.37992 0.00022 0.03874
3.0 0.45045 0.30651 0.06298 0.31842 0.00086 0.02805
4.0 0.39065 0.29583 0.04857 0.27247 0.00187 0.02128
5.0 0.34637 0.28668 0.03895 0.24584 0.00191 0.01727

Note: *These values are due to Jones (1973)
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can obtain the values of the skin-friction, the couple-stress and the Nusselt
number from the following expressions:

CGr P ={1+ (1 — ) AMY4"(0,x), MyGr;°=(1+ A/2)¢'(0, %)
NuGrL Y=y 49 (0,x)

As an example, for Pr = 0.72, A = 5.0 and s = 0.5, the local skin-friction, the
couple stress and the local Nusselt number, with terms up to 0(x~!), are given

CrGr, ™" = (14 (1 - 5)A}a/1{0.34637 + 024584/ -} (58)

(57)

M,Gr*" =(1+A /2){0.23777 +0.10401x73/% + ... } (59)

NuGry " = —x1/400.28668 + 0.001915 %/ 4.} (60)

It is worth mentioning that, in the earlier studies for Newtonian fluid, Jones
(1973) integrated the set of equations (21)-(24), by a step-by-step numerical
technique in a region where neither the series for leading edge nor the
asymptotic one for large x are adequate.

Solutions for entire (upstream to downstream) regime for ¢ > 0

In order to obtain a system of equations applicable to the entire length, we
compare the transformations given in (19) and (41) from which we find a
separate group of transformations that are useful for pursuing perturbation
analysis in the two different regimes. Here, we develop the transformations in a
way which more naturally reflect the evaluation between two basic similarity
regimes. Accordingly, to initiate the integration from the purely leading edge
regime, we introduce the following transformations:

=21+ 0" (,2), N =21+ 0" g(n,),
p= x2/5(1 +.X')_3/20¢(777 .X), 0= 9(77’ x)a (61)
= 2 25(1 + x)¥ %y,

Introducing the transformation given in equation (55) into the set of equations
(10)-(13), one gets

12+15¢ ., 2+5x

AR s LA T s i
1 8+ 5x 19,0)
aTwwe {20(1+x) (¢ — ¢)+x—} (62)

, x \", O, Of
rar+A(ph;) o= (r - )



b 12+15x ,  Sx—-4 0g  ,0f
W+ 228 + 070" “mar0 %~ ( dx gax) (63)
& =0 (64)
1, 12415, (.0 f
ﬁg +20(1 +x)f0 —x<f ox b 8x> (65)

The corresponding boundary conditions given in (14) take the form

£(0,x) =f(0,x) =0, 6(0,x) =1, g(0,x) = —sf"(0,x) 66
f(00,x) =0, ¢(c0,x) = 60(c0,x) = g(o0,x) =0 (66)
where primes denote differentiation of the functions with respect to 7.

In the above set of equations, the limit x — 0 yields the set of equations (21)-
(24) that corresponds to the leading edge solution, while x — oo leads to the set
(42)-(45) that corresponds to the asymptotic case.

Solutions of the set of equations (62)-(65) subject to the boundary conditions
(66) are obtained by the implicit finite difference method together with the
Keller-box scheme, that has been developed for the present environment very
recently by Hossain and Chowdhury (1997). To initialize the solutions of
equations (26)-(65), the initial profiles are obtained from the exact solutions of
equations (27)-(30) that corresponds to the purely free-convection flow along a
horizontal surface. Results thus obtained are compared with the leading edge
solutions as well as with the asymptotic solutions obtained earlier.

4. Results and discussion

Results are obtained for the cases of free-convection above for both positively
(A > 0) and negatively (A < 0) inclined plates for some values of the vortex
viscosity parameter, A, and the microrotation parameter s. When the plate is at
a negative angle to the horizontal, the separation of the boundary layer would
occur downstream from the leading edge of the plate as the opposed buoyancy
force and the induced pressure gradient are of comparable magnitude. For
negatively inclined plate at A = —1, the point of separations x is obtained from
the implicit finite difference solutions of equations (21)-(24) for different A for a
fluid with Pr = 0.72 and s = 0.5. No difficulty was encountered in obtaining the
solutions for x downstream from the separation point where flow reversal takes
place. The calculation, however, was terminated at the values of x = 6.5 larger
than x; where the skin-friction coefficient /" (xs,0) was consistently zero in the
fourth significant figure for our solutions which was obtained with variable
grid in the x direction (defined by x; = sinh(: —1)/200,:=0,1,2...). The
following values of the separation points, x;, for different values of vortex
viscosity parameter, A = 0.0, 1.0, 2.5 and 5.0 are respectively, 3.702, 4.366,
5.178, 6.143. For A = 0.0 the results correspond to those of Jones (1973). It is
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Figure 2(a).
Variations of local skin
friction with Pr = 0.7
and s = 05at A = 1.0,
2.5,5.0, 75 and 10.0

worth mentioning that for Pr = 0.72, x, = 3.704 which is very close to the
present solution. From the above values of the separation point x;, it can be
seen that the position of the separation point moves away from the leading
edge. Although not given here, it has been observed that for given values of the
Prandt]l number and the vortex viscosity parameter, changes in the value of the
separation point is negligible for changes in the value of the parameter s in the
interval [0, 1].

In Figures 2 and 3 we present results obtained from the numerical procedure
in case of a positively inclined plate with A = 1. Both these figures display the
variation with x of the local skin-friction, Cy, the local couple stress, M, and the
local Nusselt number, Nu at the surface of the plate. The values given by three-
term series expansions for the leading edge regime and the two-term
expansions for the downstream regime are also included for comparison with
the finite difference solutions of the equations governing the flow for the entire
regime. The comparison shows excellent agreement of the solutions for the
leading edge and downstream with solutions for the entire regime.

Figures 2(a), 2(b) and 2(c) display, respectively, the values of the skin-
friction, couple-stress and the Nusselt number for vortex viscosity A =1, 2.5,
5.0, 7.5 and 10.0 for s = 0.5 and Pr = 0.72. From these Figures, it may be seen
that the increase in the value of the vortex viscosity parameter, A leads to an
increase in the skin-friction; whereas, this leads to decrease in both the values
of the couple-stress and the Nusselt number at every x station. It may also be
observed that as the distance from the leading edge increases, the value of the
skin-friction increases; but this leads to a decrease in the value of the couple-
stress as well as of the Nusselt number.

@ All x
3.0 Small x ————

Cf v GrL3/5

00 1.0 20 3.0 40 50

X



All x
Small x ———

0.2

0.1
00 10 20 30 40 5.0
X
06 —
© All x
Small x————
05

04

15
Nu/Gry,

0.2

0.1

00 10 20 3.0 40 50
X

Figures 3(a), 3(b) and 3(c) represent, respectively, the skin-friction, the couple
stress and the Nusselt number against x for Pr = 0.72, A = 5.0 and s = 0.0, 0.1,
0.3, 0.5, 0.8 and 1.0. From these Figures it may be seen that the local skin-
friction decreases but the value of the couple stress as well as of the Nusselt
number increase with the increase of s. From these Figures, we also observe
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Figure 2(b).
Variations of local
couple stress with

Pr=07ands=05at A
=1.0, 25, 5.0, 7.5 and
10.0

Figure 2(c).
Variations of local
Nusselt number with
Pr=07ands=05atA
=1.0, 25, 5.0, 7.5 and
10.0
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excellent agreement of the series solutions in the leading edge as well as in the
downstream with the finite difference solutions for the entire length for higher
values of the material parameters A and s.

Representative non-dimensional stream velocity, angular velocity and
temperature profiles at the separation point are shown, respectively, in Figures
4(a), 4(b) and 4(c) for A = —1 (1. e. for negatively inclined plate) and values of
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the vortex viscosity, A = 0.0, 1.0, 2.0 and 5.0 with Pr = 0.72 and s = 0.5. It is
interesting to note that the solution of equations (21)-(24) behaves in a regular
manner at these separation points. The non-singular behavior of the solutions
at the separation point for the present problem for the micropolar fluid (A >
0.0) confirms the conclusion of the previous work by Jones (1973) for A = 0.0.
From the above mentioned figures, it may also be seen that the maximum
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Figure 3(c).
Variations of Nusselt
number with Pr = 0.7
and A=50ats =01,
0.3, 0.5, 0.8 and 1.0

Figure 4(a).

The stream velocity
profiles against 7 at the
separation point x; for A
=00, 1.0, 25 and 5.0
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The angular velocity
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values of the stream velocity and the angular velocity moves away from the
plate with the change of the point of separation, x; associated with the value of
the vortex viscosity A. From these Figures, one may also conclude that the
momentum boundary layer and the microrotation boundary layer and the
thermal boundary layer increase owing to the increase in the vortex viscosity of
the fluid.



5. Conclusions

In this paper, we have investigated the skin-friction, the couple stress and heat
transfer characteristics of laminar free-convection boundary layer flow of a
thermomicropolar fluid past an isothermal plate inclined at a small angle to the
horizontal. An implicit finite difference method is applied to solve the
transformed boundary layer equations in the entire regime from upstream to
downstream regimes for positively inclined surface. The series solutions of the
local nonsimilar boundary layer equations, one valid near the leading edge and
the other at large distance from it are also obtained. Both series solutions are
found in excellent agreement with the finite difference solution for both the
extreme regimes. The effects of the material parameters on the skin-friction, the
local couple stress and the local Nusselt number are also discussed. For the case
of negative inclination of the plate to the horizontal with A = —1, the
separation points could be accurately determined for different values of the
material parameters, since the solutions at these points behave in a regular
manner.
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